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ϕ : [0,∞)→ [0,∞) increasing, concave function such that ϕ(0) = 0

Question: find minimal conditions on ϕ for generalized averages of the form

sup
Q

inf
c∈R
−
∫
Q
ϕ(|f − c|)dx <∞

that imply the membership of f to the space BMO.

Definition A function ϕ is admisible if BMOϕ ⊂ BMO and hence BMOϕ =

BMO.

• Main initial example: ϕ(t) = tδ, with δ ∈ (0,1).
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concavity and BMO
Suppose that ϕ be admisible.

Let ϕ̃ be concave satisfying the following conditions:

1) ϕ ◦ ϕ̃−1 is concave for large values of t

2) ϕ ◦ ϕ̃−1 satisfies the following growth condition: for any L > 1 there exists
L0 such that

L+ ϕ ◦ ϕ̃−1(t) ≤ ϕ ◦ ϕ̃−1(2t) t > L0

Thm Then ϕ̃ is admisible, namely BMOϕ̃ = BMO

• Joint work with E. Rela
• Examples: ϕ(t) = tδ, with δ ∈ (0,1) but also

ϕ(t) = log(1 + t)

or
ϕ(t) = logδ(1 + t)

or
ϕ(t) = log(1 + log(1 + t))

(Motivated by work of A. A. Logunov, L. Slavin, D. M. Stolyarov, V. Vasyunin,
and P. B. Zatitskiy,)
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where last follows by the maximality of each of the cubes Qi.

On the other hand for arbitrary x,

|f(x)| ≤ |f(x)− fQi|+|fQi| ≤ |f(x)− fQi|+
1

|Qi|

∫
Qi
|f | ≤ |f(x)− fQi|+2n t
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tp
∣∣∣{y ∈ Rn : M#f(y) > t}

∣∣∣
�
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(1)
whenever f is a function for which the left hand side is finite.

Proof is based on the pointwise inequality: if δ ∈ (0,1)

M#
δ (Tf)(x) ≤ cT,δMf(x), x ∈ Rn
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The Ap classes of weights

Recall the definition of Ap

[w]
Ap

= sup
Q

(
1

|Q|

∫
Q
w dx

) (
1

|Q|

∫
Q
w
−1
p−1 dx

)p−1

<∞

• The Ap classes are increasing:

1 ≤ p ≤ q <∞ ⇒ Ap ⊂ Aq

• Hence it is natural to define

A∞ = ∪p≥1Ap

which is called the A∞ class of weights.
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Poincaré inequalities and Ap weights
Begin with the Poincaré inequality:
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