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¢ : [0,00) — [0, >0) increasing, concave function such that ¢(0) = 0

Question: find minimal conditions on ¢ for generalized averages of the form
sup inf —c|)dzx <
up inf Qso(If c))dz < oo
that imply the membership of f to the space BMO.

Definition A function ¢ is admisible it BM O, C BMO and hence BMO, =
BMO.

e Main initial example: () = 9, with § € (0, 1).
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concavity and BMO
Suppose that p be admisible.

Let © be concave satisfying the following conditions:
1) o o g~ 1 is concave for large values of ¢

2) v o 1 satisfies the following growth condition: for any L > 1 there exists
Lq such that

Ltpod t(®) <wo@ '(20) t>Lg
Thm  Then ¢ is admisible, namely BMOgz = BMO

e Joint work with E. Rela
e Examples: o(t) =t with§ € (0,1) but also
p(t) =109(1 +t)

of o(t) = log’(1 + t)

of o(t) = log(1 + log(1 + 1))

(Motivated by work of A. A. Logunov, L. Slavin, D. M. Stolyarov, V. Vasyunin,
and P. B. Zatitskiy,)
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for all functions f such that the left side is finite.

The typical following good-X inequality is: there is a universal constant g
such that forany ¢ > 0, and 0 < € < ¢,
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Now, for each ¢t > 0, we let ; = {x € R™ : M f(x) > t} We can consider
the Calderén—Zygmund covering lemma of f in R™ for these values of ¢t. This
yields a collection of dyadic cubes {Q;}, maximal with respect to inclusion,
satisfying €2; = U;Q; and

t < I <27

|Qi| JQ;
for each s. Now let ¢ > 1 to be chosen in a moment. Since Q,; C €2,
we have

Q] = 1N =) Hr € Q;: Mf(z) > qt}| =
i
= {z € Qi M(fx,)(=) > gt}
Z- (]
where last follows by the maximality of each of the cubes Q);.

On the other hand for arbitrary =,
1
Qi /Q;

|f(@)] < |f(z) = fo,l+|fo,] < |f(z) — fo,l+ [fI < [f(z) = fo,|+2"¢
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Then for g > 2™

|th| S Z |EQZ|7
where Fq, = {x € Q; : M((f — fg,)x@,)(x) > (4 — 2™)t}.

Let e > 0 to be chosen in a moment. We split the family {Q;} in two:

()i eI if

1
f— fo.| <et, or
Qi) JQ; Qi

1
(i) 2 € 11 if f—fo.l > et
Qi Qi| QZ'
Then
el <X |Bql + X 1Bg | =1 +11
iel iell

For | we use that M is of weak type (1, 1) to control the unweighted part:

‘E < 1 1
@il = (g =2t Qi Ja

— JO.l Q| < : il-
|f — fo,l Q4] (q_Qn)|Q|
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and
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A>0 A>0 (1)

whenever f is a function for which the left hand side is finite.

Proof is based on the pointwise inequality: if § € (0, 1)

MZ(Tf)(z) < epsMf(z), x€R"



The A, classes of weights

Recall the definition of A,



The A, classes of weights

Recall the definition of A,

[w]Ap_S“p<|22|/ v ) (ﬁ/@wﬁ



The A, classes of weights

Recall the definition of A,

["”]Ap_sup<|22|/ v ) (ﬁ/@“’p_ll

e The A, classes are increasing:



The A, classes of weights

Recall the definition of A,

1 1 1 \PT
[w]Ap Sup <|Q!/ w dx > <@/pr dx) < 0

e The A, classes are increasing:

1<p<qg<oo = A, C A



The A, classes of weights

Recall the definition of A,

1 1 1 \PT
[w]Ap Sup <|Q!/ w dx > <@/pr da:) < 0

e The A, classes are increasing:

1<p<qg<oo = A, C A

e Hence it is natural to define



The A, classes of weights

Recall the definition of A,

1 1 1 \PT
[w]Ap Sup <|Q!/ w dx > <@/pr da:) < 0

e The A, classes are increasing:

1<p<qg<oo = A, C A

e Hence it is natural to define

Aoco = Up>14p



The A, classes of weights

Recall the definition of A,
[w] ( ~ [ wz ) ( : =¥ )pl
w — Sup / —/ wP—+ ax < 0
Ap Q) QlJe

e The A, classes are increasing:

1<p<qg<oo = A, C A

e Hence it is natural to define

which is called the A class of weights.
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Holder’s inequality yields
1 . D] 1/p
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END FOURTH LECTURE



